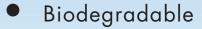
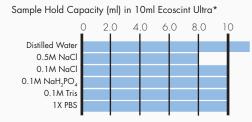
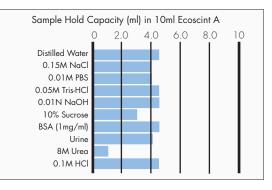


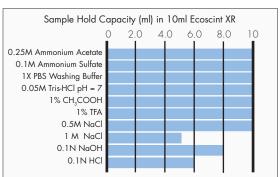
- Biodegradable Scintillation Cocktails for Discrete Samples and HPLC Flow Counting
- Liquid Scintillation and Radiation Safety Accessories


Biodegradable Scintillation Cocktails


Ecoscint[™] Ultra

- The Best Scintillation Cocktail on the Market
- Combines the Sample Hold of Ecoscint XR with the Counting Efficiency of Ecoscint H
- Ideal for Ultra-Low Background Environmental Testing


Ecoscint Ultra 4 liter LS-270



- Low Toxicity
- High Counting Efficiency

* Ecoscint Ultra was designed both for low temperature (15°C), ultra-low background counting and room temperature counting. The data above reflects the intermediate temperature of 20°C. For salt or buffer solutions at 25°C, we recommend verifying emulsion clarity before exceeding 6ml sample in 10ml cocktail.

% Counting Efficiency (³ H) of Typical Samples at Various Volumes (in 10ml Ecoscint H)				
		Sample Volume (ml)		
	0	0.5	1.0	
Distilled Water	62.4	57.5	55.9	
0.15M NaCl	62.4	57.1	55.4	
0.01M PBS	62.4	57.3	55.1	
0.05M Tris-HCl	62.4	57.7	55.8	
0.01N NaOH	62.4	58.8	58.4	

Ecoscint A

- All-Around Performance
- High Efficiency with High Sample Holding

Ecoscint A 4 liter LS-273

Ecoscint XR

- Ultra-High Sample Holding
- Excellent Counting Efficiency

Ecoscint XR	LS-272
4 liter	

Ecoscint H

• Optimized for Counting Efficiency

Ecoscint H 4 liter

LS-275

- Ideal Solutions for every Application
- Stringently Reproducible Quality
- **Experienced Technical Support**

Ecoscint ORIGINAL

- The Original Ecologically Responsible Scintillation Fluid
- Economical

Ecoscint ORIGINAL 4 liter

LS-271

Ecoscint O

- Cocktail for Non-Aqueous Samples
- **Excellent Counting Efficiency**

Ecoscint O 4 liter LS-274

Uniscint[®] BD

- Cocktail for High Salt Samples
- Also For Flow Counting

Uniscint BD 4 liter

LS-276

Samples and **Applications**

Samples and			•					GILAR
Applications		Ň	, M	\$	$\nabla \dot{\lambda}$		$\frac{1}{2}$	× S
	4.69							eint BD
Acidic samples					V	$\left \right\rangle$		
Agarose gels	X	$\left \right\rangle$	Ă		X		X	
Alkaline samples	ŏ		ŏ	$\left \begin{array}{c} \\ \\ \end{array} \right $	Ă		ŏ	
Alpha counting	6	$\overline{\bigcirc}$	Ō	Õ	ŏ	$\overline{\bigcirc}$	ŏ	
Alpha/beta discrimination	Ō	Õ	Ō	Õ	Ŏ	Õ	Ō	
Ammonium phosphate	6		Ō	Õ	Ō		ŏ	
Aqueous samples - high vol.	Õ		Õ	Õ	Ō		Ō	
Aqueous samples - low/med. vol.	Ó		Ō		Ō			
Biological samples					0	\bigcirc	\bigcirc	
Blood	O	\circ	0	0	0	\bigcirc	0	
Brain	\bigcirc	\circ	\bigcirc	0	0	\bigcirc	\bigcirc	
Carbon dioxide	\bigcirc	\bigcirc	0	0		\bigcirc	\bigcirc	
Catecholamine assays	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc		
Cellulose acetate membranes		\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	
Cellulose nitrate membranes		\bigcirc	\bigcirc		0	\bigcirc	\bigcirc	
Cesium chloride gradients	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc		
Density gradients	\bigcirc		\bigcirc	$ \circ $	O	\bigcirc		
Environmental samples			\bigcirc	0000	0			
Filter paper		000000			0		\bigcirc	
Glass fiber filters		O			0		\bigcirc	
High sensitivity counting		$\left \bigcirc \right $	0		0	0	0	
Inositol phosphates	9	$\left \bigcirc \right $			Q			
Milk	Ю	$\left \bigcirc \right $		$\left \bigcirc \right $	\mathcal{Q}		9	
Organic samples - hydrophobic	Я		Я	$\left \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right $			9	
Oxidation counting	Y	0	\square				$\left \right\rangle$	
Plasma Polar (hydronhilia) ophonta	X		X		Х			
Polar (hydrophilic) solvents Polyacrylamide gels	X		X		X		X	
Radon	X		X		X		X	
RIA - supernatants	X				X		X	
Salt solutions - high	X		Ă		X			
Salt solutions - medium, low	Ă		Ă		X		Ă	
Serum	ŏ		ŏ	ŏ	ð	$\overline{0}$	ŏ	
Sucrose	6		ŏ	ŏ	ŏ	ŏ	ŏ	
Tissue homogenates	6	Õ	Ó	Õ	6	Ó	6	
Tissue solubilization	Ó	$\overline{\mathbf{O}}$	Ō	Ō	Ō			
Urine			\bigcirc		0	\bigcirc		
Water					0			
				r				
 best performance good performance 								
	С) goo	od p	erfor	man	се		

If you have any questions concerning LSC applications, please e-mail our Technical Services Department at techsupport@nationaldiagnostics.com or telephone 404-699-2121 or 1-800-526-3867 in the United States or 44 (0) 1482 646022 in Europe.

Biodegradable Cocktails for HPLC Flow Detection

Ecoscint[™] **Flow**

- The Best All-Around Flow Cocktail on the Market
- Ultra-High Sample Hold (1:1 Cocktail to Sample)
- Excellent Counting Efficiency
- Biodegradable, High Flashpoint Solvent

Ecoscint Flow 4 liter LS-288

LS-285

Monoflow[™]5

• Moderate Sample Hold (3:1 Cocktail to Sample)

Monoflow 5 4 liter

	me of Sample per 10ml Ecoscint Flow)
Hydrochloric Acid 0.1 N	
Sodium Hydroxide 0.1 N	
Sodium Chloride 0.5 M	
Sodium Chloride 1 M	
Sucrose 40%	
Ammonium Acetate 15 mM	
Ammonium Acetate 0.25 M	
Tris/HCl 0.05 M $pH = 7$	>10 ml
Tris/HCl 0.5 M $pH = 7$	
Washing Buffer 1X PBS	10 mL
Ammonium Sulfate 0.1 M	10 mL
Acetonitrile: 1% HOAc 75:25%	7 mL
Acetonitrile: 1% HOAc 50:50%	5 mL
Acetonitrile: 1% HOAc 25:75%	5 mL
Acetonitrile: 1% HOAc 0:100%	10 mL
Acetonitrile: 0.1% TFA 75:25%	7.5 mL
Acetonitrile: 0.1% TFA 50:50%	5.5 mL
Acetonitrile: 0.1% TFA 25:75%	5.5 mL
Acetonitrile: 0.1% TFA 0:100%	> 10 m.
Acetonitrile: 1X PBS 75:25%	2.5 - 3 mL
Acetonitrile: 1X PBS 50:50%	2.5 - 3 mL
Acetonitrile: 1X PBS 25:75%	3.5 mL
Acetonitrile: 1X PBS 0:100%	8 mL
Methylene Chloride	All proportions
	All proportions
Ammonium Fomate 1 M	

LSC Accessories and Radiation Safety Products

Bottle-top Dispenser

The variable volume National Diagnostics Bottle-top Dispenser (0.2 - 10ml) permits rapid, reproducible dispensing of exact quantities of scintillation cocktail. Guaranted to be compatible with National Diagnostics scintillation cocktails, the Bottle-top Dispenser has an accuracy better than 0.3% on maximum delivery and a precision better than 0.1% CV. The Bottle-top Dispenser is manufactured with a standard 30mm neck fitting and is supplied with 38,40 and 45mm bottle neck adaptors. Also available is an optional Extendable Delivery Jet which makes filling large numbers of vials faster and easier.

Bottle-top Dispenser	LS-900
Extendable Delivery Jet	LS-904

Nuclean[™]and Nuc-Wipes[™]

Nuclean and Nuc-Wipes can help you maintain the safety of your working environment. Nuclean is National Diagnostics' concentrated (50X), effective, and economical solution for removing radioactivity from laboratory glassware, equipment and surfaces. Nuc-Wipes are unique pads for environmental wipe tests. Unlike filter paper, Nuc-Wipes dissolve in scintillation fluid, ensuring accurate, reproducible results.

Nuclean 1 gallon	NC-200
l quart Nuc-Wipes (Box of 1000 Wipes) 1 box	NW-300
T DOX	

Scintillation Vials

High density polyethylene (HDPE) scintillation vials, manufactured as a one-piece molding with no seams, preventing cracking, pinholes and leakage. These vials provide excellent UV light transmission for high counting efficiency.

Scintillation Vials with Screw Caps

20ml vials (<u>1000</u> /case)	SVC-20
8ml vials (<u>2000</u> /case)	SVC-08
6ml vials (<u>1000</u> /case)	SVC-06

CONTACT NATIONAL DIAGNOSTICS