Associated Products

Product	Description	Pack Size	Cat No.
ISOLATE II Genomic DNA Kit	Rapid isolation of high-quality genomic DNA from many different starting material	10 Preps 50 Preps 250 Preps	BIO-52065 BIO-52066 BIO-52067
ISOLATE II Plant DNA Kit	Rapid isolation of high-quality genomic DNA from a wide variety of plant species	10 Preps 50 Preps 250 Preps	BIO-52068 BIO-52069 BIO-52070
ISOLATE II RNA Mini Kit	Isolation of high-yield and extremely pure total RNA from a variety of samples	10 Preps 50 Preps 250 Preps	BIO-52071 BIO-52072 BIO-52073
ISOLATE II RNA Plant Kit	Isolation of high-yield and extremely pure total RNA from a wide variety of plant species	10 Preps 50 Preps	BIO-52076 BIO-52077
TRIsure™	Quick isolation of high-quality RNA from a variety of sources for subsequent use in cDNA synthesis	100 mL 200 mL	BIO-38032 BIO-38033
SensiFAST™ cDNA Synthesis Kit	Fully optimized to generate maximum yields of full-length and low abundance cDNA from RNA	50 Reactions 250 Reactions	BIO-65053 BIO-65054
Agarose	Molecular biology grade agarose	100 g 500 g	BIO-41026 BIO-41025

TRADEMARK AND LICENSING INFORMATION

1).Trademarks: SensiMix[™] and SensiFAST[™] (Bioline Reagents Ltd), SYBR[®] (Molecular Probes), ROX[™], LightCycler[™] (Roche), StepOne[™] (ABI), RotorGene[™] (Qiagen), LightCycler[®] (Roche).

2). Purchase of this product conveys a licence from Life Technologies to use this SYBR[®] containing reagent in an end-user RUO assay. Parties wishing to incorporate this SYBR[®] containing reagent into a downstream kit, should contact Life Technologies for SYBR[®] Licencing information.

Storage and Stability

SensiMix[™] SYBR[®] Low-ROX Kit is shipped on dry/blue ice. All kit components should be stored at -20°C upon receipt. Excessive freeze/thawing is not recommended.

Expiry:

When stored under the recommended conditions and handled correctly, full activity of the kit is retained until the expiry date on the outer box label.

Quality Control:

SensiMix SYBR[®] Low-ROX Kit and its components are extensively tested for activity, processivity, efficiency, heat activation, sensitivity, absence of nuclease contamination and absence of nucleic acid contamination prior to release.

Safety Precautions:

Please refer to the material safety data sheet for further information.

Notes:

Research Use Only

Description

The SensiMix[™] SYBR[®] Low-ROX Kit is a high-performance reagent designed for superior sensitivity and specificity on various real-time instruments. The SensiMix SYBR[®] Low-ROX Kit employs a hot-start DNA polymerase, for high PCR specificity and sensitivity. SensiMix SYBR[®] Low-ROX is inactivated and possesses no polymerase activity during the reaction set-up, preventing non-specific amplification including primer-dimer formation.

For ease-of-use and added convenience, SensiMix SYBR[®] Low-ROX is provided as a 2x mastermix containing all the components necessary for real-time PCR, including the SYBR[®] Green I dye, dNTPs, stabilisers and ROX for optional use. As a ready-to-use premix, only primers and template need to be added.

Kit components

Reagent	250 x 50 μL	500 x 50 μL	2000 x 50 μL
	reactions	reactions	reactions
SensiMix™ SYBR [®]	5 x 1.25 mL	10 x 1.25 mL	40 x 1.25 mL
Low-ROX (2x)	(6.25 mL)	(12.5 mL)	(50 mL)
50 mM MgCl ₂	1 x 1 mL	1 x 1 mL	4 x 1 mL

Kit compatibility

The SensiMix SYBR[®] Low-ROX Kit has been optimized for use in SYBR[®] Green-based real-time PCR on the real-time instruments listed in the following compatibility table, each of these instruments having the capacity to analyze the real-time PCR data with the passive reference signal either on or off. The kit is also compatible with several instruments that do not require the use of ROX, such as the BMS Mic, Qiagen (Corbett) Rotor-GeneTM 6000, Bio-Rad CFX96 or Roche LightCycler[®] 480.

Manufacturer	Model
ABI	7500, 7500 FAST, ViiA7
Agilent (Stratagene)	Mx4000™, Mx3000P™, Mx3005P™

General considerations

To help prevent any carry-over DNA contamination we recommend that separate areas be maintained for PCR set-up, PCR amplification and any post-PCR gel analysis. It is essential that any amplified PCR product should not be opened in the PCR set-up area.

 Bioline Reagents Ltd
 Bioline USA Inc.

 UNITED KINGDOM
 USA

 Tel: +44 (0)20 8830 5300
 Tel: +1 508 880 8990

 Fax: +44 (0)20 8452 2822
 Fax: +1 508 880 8993

Bioline GmbH GERMANY

GERMANY AUSTRALIA Tel: +49 (0)337 168 1229 Tel: +61 (0)2

Fax: +49 (0)3371 68 1244

 Bioline (Aust) Pty. Ltd
 Bioline France

 AUSTRALIA
 FRANCE

 Tel: +61 (0)2 9209 4180
 Tel: +33 (0)1 42 56 04 40

Fax: +33 (0)9 70 06 62 10

Meridian Bioscience Asia Pte Ltd SINGAPORE

Tel: +65 6774 7196 Fax: +65 6774 6441

Website: www.bioline.com/sensimix email: info@bioline.com

Fax: +61 (0)2 9209 4763

Primers: the sequence and concentration of primer as well as the amplicon length can be critical for specific amplification, yield and overall efficiency of any real-time PCR. We strongly recommend taking the following into consideration when designing and running your PCR reaction:

- use primer-design software, such as Primer3 or visual OMP[™] (<u>http://frodo.wi.mit.edu/primer3/</u> and DNA Software, Inc ; <u>http://dnasoftware.com/</u> respectively). Primers should have a melting temperature (Tm) of approximately 60 °C
- optimal amplicon length should be 50-150 bp
- a final primer concentration of 250 nM is suitable for most PCR conditions, however to determine the optimal concentration we recommend a primer titration in the range of 0.1–1 μ M
- use equimolar primer concentrations
- when amplifying from cDNA use gene-specific primers. If possible use intron-spanning primers to avoid amplification from genomic DNA

Template: it is important that the DNA template is suitable for use in PCR in terms of purity and concentration. Also, the template needs to be devoid of any contaminating PCR inhibitors (e.g. EDTA). The recommended amount of template for PCR is dependent upon the type of DNA used. The following should be considered when using genomic DNA and cDNA templates:

- Genomic DNA: use up to 1 μg of complex (e.g. eukaryotic) genomic DNA in a single PCR. We recommend using the Bioline ISOLATE II Genomic DNA Mini Kit (BIO-52066) for high yield and purity from both prokaryotic and eukaryotic sources
- cDNA: the optimal amount of cDNA to use in a single PCR is dependent upon the copy number of the target gene. We suggest using 100 ng cDNA per reaction, however it may be necessary to vary this amount. To perform a two-step RT-PCR, we recommend using the SensiFAST cDNA Synthesis Kit (BIO-65053) for reverse transcription of the purified RNA. For high yield and purity of RNA, use the ISOLATE II RNA Mini Kit (BIO-52072)

 $MgCl_2$: The MgCl₂ concentration in the 1x reaction mix is 3 mM, which is optimal for SensiMix in the majority of real-time PCR conditions. If necessary, we suggest titrating MgCl₂ to a maximum of 5 mM.

PCR Controls: It is important to detect contamination by DNA that may affect the reliability of the data. Always include a no-template control (NTC), replacing the template with PCR-grade water. When performing a two-step RT-PCR, set-up a no-RT control as the NTC for the PCR.

Optional ROX: The SensiMix SYBR[®] Low-ROX Kit is premixed with ROX (5-carboxy-X-rhodamine, succinymidyl ester), so that where necessary, ROX fluorescence can be optionally detected on certain real-time instruments. If your real-time instrument has the capability of using ROX and you wish to use this option, then this option must be selected by the user in the software.

Procedure

Reaction mix composition: Prepare a PCR master mix. The volumes given below are based on a standard 50 μ L final reaction mix and can be scaled accordingly.

Reagent	Volume	Final concentration
2x SensiMix™ SYBR [®] Low-ROX	25 μL	1x
25 μ M Forward Primer	0.5 μL	250 nM
25 μ M Reverse Primer	0.5 μL	250 nM
H ₂ 0	Up to 45 μL	-
Template	5 μL	
50 μl Final volume		

Suggested thermal cycling conditions

The PCR conditions described below are suitable for SensiMix SYBR[®] Low-ROX Kit for the majority of amplicons and real-time PCR instruments. However, the cycling conditions can be varied to suit customer or machine-specific protocols. The critical step of the PCR is the 10 minute initial activation at 95 °C. The detection channel on the real-time instrument should be set to (SYBR[®]) Green or FAM.

Cycles	Temperature	Time	Notes
1	*95 °C	*10 min	Polymerase activation
40	95 °C 55-60 °C 72 °C	15 s 15 s 15 s	Temp. depends on the Tm of primers Acquire at end of step

*Non-variable parameter

Optional analysis:

After the reaction has reached completion refer to the instrument instructions for the option of melt-profile analysis.

Troubleshooting Guide

Problem	Possible Cause	Recommendation	
	Activation time too short	Make sure SensiMix is activated for 10min at 95 $^\circ C$ before cycling	
	Error in protocol setup	Verify that correct reagent concentrations, volumes, dilutions and storage conditions have been used	
	Suboptimal primer design	Use primer design software or validated primers. Test primers on a control template	
No amplification	Incorrect concentration of primers	Use primer concentration between 100 nM and 1 μM	
trace AND	Template degraded	Re-isolate your template from the sample material or use freshly prepared template dilution	
No product on agarose gel	Primers degraded	Use newly synthesized primers	
	Template contaminated with PCR inhibitors	Further dilute template before PCR or purify template and resuspend it in PCR-grade $H_2 O$	
	Template concentration too low	Increase concentration used	
	Cycling conditions not optimal	Increase extension/annealing times, increase cycle number, reduce annealing temperature	
No amplification trace AND Product on agarose gel	Error in instrument setup	Check that the acquisition settings are correct during cycling	

Troubleshooting Guide (Continued)

Problem	Possible Cause	Recommendat
Non-specific amplification product / Primer-dimers	Suboptimal primer design	Redesign prime
	Primer concentration too high	Test dilution ser
	Primer concentration too low	Titrate primers i
	Primer annealing temperature too low	Increase PCR a amplification pro
	Template concentration too low	Increase templa
	Template concentration too high	Reduce templat
	Extension time too long	Reduce extensi
	Activation time too short	Ensure that the
	Annealing temperature too high	Decrease annea
	Extension time too short	Double extension
Late amplification	Template concentration too low	Increase concer
trace	Template is degraded	Re-isolate temp
	Suboptimal design of primers	Redesign prime
	Primer concentration too low	Increase concer
PCR efficiency below 90%	Extension time is too short	Increase extens
	Primer concentration too low	Increase concer
	Suboptimal design of primers	Redesign prime
PCR efficiency above 110%	Template is degraded or contains PCR inhibitors	Re-isolate temp template and re
	Non specific amplification and/or primer dimers	Use melt analys amplification pro

Technical Support

If the troubleshooting guide does not solve the difficulty you are experiencing, please contact Technical Support with details of reaction setup, cycling conditions and relevant data.

Email: <u>tech@bioline.com</u>

ers using appropriate software or use validated primers

eries of primer concentrations until primer dimer/non-specific amplification pear

in the concentration range of 100 nM - 1 μM

annealing temperature in increments of 2 °C until primer dimer/non-specific roducts disappear

late concentration

ate concentration until non-specific products disappear

sion time to determine whether non-specific products are reduced

reaction is activated for 10 min at 95 °C before cycling

ealing temperature in steps of 2 °C

ion time to determine whether the cycle threshold (Ct) is affected

entration if possible

plate from sample material or use freshly prepared template dilution

ers using appropriate software or use validated primers

entration of primer in 100 nM increments

sion time

entration of primer in 100 nM increments

ers using appropriate software or use validated primers

plate from sample material or use freshly prepared template dilution or purify esuspend it in $\ensuremath{\text{H}}_2\ensuremath{\text{O}}$

ysis and 4% agarose gel electrophoresis to confirm presence of non-specific roducts. See above for preventing/removing non-specific products